Core–Shell Structure of Monodisperse Poly(ethylene glycol)-Grafted Iron Oxide Nanoparticles Studied by Small-Angle X-ray Scattering

نویسندگان

  • Tilman A. Grünewald
  • Andrea Lassenberger
  • Peter D. J. van Oostrum
  • Harald Rennhofer
  • Ronald Zirbs
  • Barbara Capone
  • Iris Vonderhaid
  • Heinz Amenitsch
  • Helga C. Lichtenegger
  • Erik Reimhult
چکیده

The promising applications of core-shell nanoparticles in the biological and medical field have been well investigated in recent years. One remaining challenge is the characterization of the structure of the hydrated polymer shell. Here we use small-angle X-ray scattering (SAXS) to investigate iron oxide core-poly(ethylene glycol) brush shell nanoparticles with extremely high polymer grafting density. It is shown that the shell density profile can be described by a scaling model that takes into account the locally very high grafting density near the core. A good fit to a constant density region followed by a star-polymer-like, monotonously decaying density profile is shown, which could help explain the unique colloidal properties of such densely grafted core-shell nanoparticles. SAXS experiments probing the thermally induced dehydration of the shell and the response to dilution confirmed that the observed features are associated with the brush and not attributed to structure factors from particle aggregates. We thereby demonstrate that the structure of monodisperse core-shell nanoparticles with dense solvated shells can be well studied with SAXS and that different density models can be distinguished from each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 2: Behavior in solution.

Aqueous solutions of iron oxide nanoparticles (NPs) stabilized by poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with the 5,000 Da poly(ethylene glycol) (PEG) or the short ethylene glycol (EG) tails were analyzed by small-angle X-ray scattering (SAXS). Advanced SAXS data analysis methods were employed to systematically characterize the structure and interactions between the NPs. Depending...

متن کامل

Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer.

Iron oxide nanoparticles (NPs) with diameters of 16.1, 20.5, and 20.8 nm prepared from iron oleate precursors were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD). The coating procedure exploited hydrophobic interactions of octadecene and oleic acid tails while hydrolysis of maleic anhydride moieties allowed the NP hydrophilicity. The PMAcOD nanostructure in water and the PMAcOD-coated ...

متن کامل

Synthesis of Nickel/ Molybdenum Oxide Bimetallic Nanoparticles via Microwave Irradiation Technique

   Nickel-molybdenum oxidebimetallic nanoparticles were synthesized in ethylene glycol using the microwave irradiation technique. According to the results, successive reduction of nickel and molybdenum ions, followed by thermal treatment of obtained nanoparticles led to formation of core-shell structured nickel-molybdenum oxide nanoparticles. According to the results, the thickness of the s...

متن کامل

Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles

Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...

متن کامل

Hydrophilization of Magnetic Nanoparticles with Modified Alternating Copolymers. Part 1: The Influence of the Grafting.

Iron oxide nanoparticles (NPs) with a diameter 21.6 nm were coated with poly(maleic acid-alt-1-octadecene) (PMAcOD) modified with grafted 5,000 Da poly(ethyelene glycol) (PEG) or short ethylene glycol (EG) tails. The coating procedure utilizes hydrophobic interactions of octadecene and oleic acid tails, while the hydrolysis of maleic anhydride moieties as well as the presence of hydrophilic PEG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2015